The Case of the Indiscriminate Waveform

PEA Arrest

From the very start of our Residency training, Emergency Medicine Physicians are tasked with committing to memory the correctable causes of PEA arrest. It is expected any intern worth their salt should be able to recite the H’s & T’s proselytized by the AHA as far back as 1995 (1). And yet, it quickly becomes evident that this strategy for the management of PEA arrest is not only unwieldy and impractical, but the evidentiary basis supporting its use is minimal. In fact, a brief perusal of the evidence supporting this AHA document reveals that there is none (1).

Recently a more practical strategy was published in Medical Principles and Practice by Littman et al in 2014 (2) suggesting using QRS width to help determine the cause of the arrest. The authors claim that narrow complex rhythms represent a mechanical source of the arrest (hypovolemia, cardiac tamponade, tension pneumothorax, pulmonary embolism, and mechanical hyperinflation), and a wide complex represents a metabolic or left ventricular problem (hyperkalemia, sodium channel blockade, or acute myocardial infarction). And while this algorithm garnered a great deal of popularity in the FOAM community it too is based off very little legitimate evidence. In fact, the authors fail to offer evidence supporting the notion that their strategy accurately predicts etiologies of arrest. The passage reads as follows:

The general assumption is that narrow-complex PEA is generally due to a mechanical problem frequently caused by right ventricular inflow or outflow obstruction, whereas wide-complex PEA is typically due to a metabolic problem or ischemia and left ventricular failure. Wide-complex PEA may also indicate agonal rhythm (2).

The most robust evidentiary support for narrow complex rhythms representing a readily correctable cause of arrest, originates from a single paper published in 1992 in Chest by Paradis et al (3). This paper examines a cohort of 94 patients in PEA arrest. Using arterial catheters, the authors found that a portion of these patients had what they called pseudo-PEA, or a pulse demonstrated on arterial waveform that was not detected through direct palpation. The authors cite that patients with pseudo-PEA were more likely to have a narrow QRS than those in true PEA arrest. And while the mean QRS width was significantly more narrow in patients in pseudo-PEA (0.12 vs 0.24 ms), the corresponding interquartile ranges varied too much (0.04-0.24 vs 0.11-0.56 ms) for this measurement to be used clinically. Furthermore, the authors did not investigate the specific etiologies responsible for patients’ presentations and how they related to QRS width. Although the authors cite that patients with narrow complex waveforms demonstrated significantly improved short-term outcomes and more frequently responded to pressor therapy (23% vs 77.8%) when compared to their wide-complex counterparts (35.9% Vs 14.5%), these differences did not translate into improvements in neurologically intact survival (3).

A recent article published in Resuscitation sought to directly examine the utility of QRS width in predicting the etiology of cardiac arrest (4). Published by Bergum et al, this was a prospective observational cohort examining patients experiencing in-hospital cardiac arrests (IHCA) with an initial rhythm determined to be PEA. The authors then focused on the subset of PEA patients in whom they could establish a definitive cause of their arrest. Using this cohort and the data garnered from the defibrillator waveform analysis during the resuscitation, the authors examined the predictive value of the EKG pattern to predict the underlying cause of the arrest.

Over a 4-year period, the authors identified 144 patients who experienced an IHCA with an initial rhythm of PEA. Of these, 51 patients had a readily identifiable cause of their arrest. EKG criteria were measured independently by two electrophysiologists.  The vast majority (90%, 46/51) of the EKGs analyzed were considered to be a wide-complex (width> 120 ms) and 63% (32/51) were considered bradycardic (<60 bpm). Only 6% (3/51) were considered normal.

In brief no EKG criteria was predictive of either the etiology leading to the arrest or survival to hospital Screen Shot 2016-05-02 at 4.19.43 PMdischarge. Of the 21 patients who achieved ROSC, the HR varied from 25 to 128 BPM and the QRS was anywhere from 79-264 ms. Similar variability was observed in the 6 patients who survived to hospital discharge. Fig 2 and fig 3 in the manuscript clearly illustrate there is no discernible association between QRS width and the etiology of arrest or likelihood of neurologically intact survival.

The limitations of this study are many. Its small sample size makes it difficult to draw any definitive conclusions from these observations. There may very well be an association with QRS Screen Shot 2016-05-02 at 4.22.08 PM
width and cause of arrest that is hidden in statistical noise, but if it does exist this association is weak and erratic. This data should certainly cause us pause when considering the utility of the QRS complex in PEA arrest. Its use should be limited to determining if and when to administer treatments for hyperkalemia.

PEA  is so prognostically dismal because the majority of these arrests are due to an agonal rhythm (5). Caused by either severe cardiac dysfunction or more commonly a ventricular arrhythmia that, because of a prolonged downtime, spontaneously converted or was defibrillated into an agonal rhythm. As such the most reliable predictive utility of PEA in cardiac arrest is as a surrogate for a prolonged downtime. Despite this poor prognosis, a small number of these patients can have a good outcome if a correctable cause can be rapidly identified. The H’s and T’s proposed by the AHA is far too complex, unwieldy and based on little empiric evidence. The alternative strategy of using the QRS width to guide resuscitative efforts, though more straightforward, is based off an assumption that when empirically tested does not reliably predict causes or outcomes. Rather, a far simpler approach should be employed. One that does not focus on every possible cause for PEA arrest no matter how rare or ineffective our treatments are, but focuses on the few causes we can rapidly and effectively correct. These correctable causes are hypoxia, hypovolemia, tension pneumothorax, cardiac tamponade, and pseudo-PEA. Rather than using the EKG, which consistently fails to reliably differentiate these etiologies, the utilization of bedside ultrasound can quickly and accurately identify 4 of the 5 correctable causes while the rapid placement of an ETT will empirically account for the remainder.

The Fog of War, was first coined by Prussian Military Analyst Carl Von Clausewitz to describe the uncertainty in combat.

War is the realm of uncertainty; three quarters of the factors on which action in war is based are wrapped in a fog of greater or lesser uncertainty. A sensitive and discriminating judgment is called for; a skilled intelligence to scent out the truth.

So too is the uncertainty we face when managing patients in cardiac arrest. Rarely are the cause, course and potential solutions conveniently laid out in a clear and concise fashion. We are forced to use clinical surrogates as beacons to assist in navigating this uncertain course.  It behooves us to select clinical tools that are both reliable and accurate. Such is the skilled intelligence to scent out the truth.

Sources Cited:

  1. Kloeck et al. A practical approach to the aetiology of pulseless electrical activity. A simple 10-step training mnemonic. Resuscitation 1995; 30:157–159
  2. Littmann et al. A Simplified and Structured Teaching Tool for the Evaluation and Management of Pulseless Electrical Activity. Med Princ Pract 2014; 23: 1 – 6.
  3. Paradis NA, Martin GB, Goetting MG, Rivers EP, Feingold M, Nowak RM. Aortic pressure during human cardiac arrest. Identification of pseudo-electromechanical dissociation. Chest. 1992;101(1):123-8
  4.  Bergum et al. ECG patterns in early pulseless electrical activity–associations with aetiology and survival of in-hospital cardiac arrest.Published online April 3oth 2016
  5. Desbiens NA. Simplifying the diagnosis and management of pulseless electrical activity in adults: a qualitative review. Critical Care Medicine 2008;36(2):391-6

 

 

 

The Case of the Man Made of Straw

So often when interpreting the medical literature, success is determined by how you define it. Such is the case with a recent article on the management of pain due to ureteral colic. Published in the Lancet in 2016, Pathan et al examined the efficacy of IM diclofenax, IV acetaminophen, or IV morphine in treating the

Read More

The Case of the Perfect Imperfection

The Enemy of Good is Perfect The interpretation of literature is not dissimilar from the interpretation of the Rorschach tests. To one person the data appears to be a freshly hatched butterfly full of hope and promise. While to another it is a discomforting stain resulting from the splatter of improperly handled bodily excrement. What you

Read More

A Case of Shadows Part II

I think we all can agree that the subtleties of the thoracic cavity go far beyond the diagnostic capabilities of our standard two-view chest x-ray. We have robust data that demonstrates the superb diagnostic prowess of bedside ultrasound (US) when compared to the mediocrity of plain films (1, 2,3,4). And yet more information is not

Read More

The Case of the Pragmatic Wound

The clinical milieu of the Emergency Department is far from straightforward. The cognitive grime in which we function is rarely conducive to the pristine distinctions drawn by Evidence-Based Medicine (EBM). As such we are often asked to make dichotomous decisions based off a single study, using answers to questions we never intended on asking. Until

Read More

The Case of the Anatomic Injury

  It is not uncommon for the standard of care to be dictated by those who speak the loudest rather than a representative sample of best medical practice. This is certainly the case with the inclusion of whole-body CT scans in the initial management of patients presenting to the Emergency Department with traumatic complaints. Known

Read More

The Case of the Precise Inaccuracy

In the world of medical science we are often lulled into a false sense of security by large sample sizes and their correspondingly small confidence intervals. We often forget that such methodologic strengths augment only a trials precision, or the likelihood a similar trial will produce similar results. Such statistical robustness speaks little towards a

Read More

The Adventure of the Cardboard Box Revisited

Meta-analyses function under the assumption that the summation of data from multiple sources is a more accurate estimate of the true effect size than any one individual trial. And yet sometimes such statistical endeavors serve only to add dirt to the already muddy water. Such is the case with the recent trials examining endovascular therapy

Read More

The Case of the Blind Allocator

In the modern world of evidence based medicine we exist in a perpetual state of doubt, continually attempting to perceive truths through the veil of science. Far too often our sample cohort deviates from the population it intends to represent. Hypothesis testing and frequentist statistics are tools intended to quantify the extent to which the

Read More

The Case of Dubious Squire Continues

In the era before the ubiquitous use of bedside ultrasound, BNP and its derivative natriuretic peptides were, at best, a mediocre test that added little to clinical judgment. In today’s world of sonographic abundance, they simply add noise to our already deafening workflow. Despite a wealth of evidence demonstrating natriuretic peptides’ lack of clinical utility,

Read More